diff --git a/process/AISalesproject_lib/AISalesproject_lib.aod b/process/AISalesproject_lib/AISalesproject_lib.aod new file mode 100644 index 0000000000000000000000000000000000000000..c109e9524b9ff27dffb007486cdb1091ef22e50c --- /dev/null +++ b/process/AISalesproject_lib/AISalesproject_lib.aod @@ -0,0 +1,9 @@ +<?xml version="1.0" encoding="UTF-8"?> +<process xmlns="http://www.adito.de/2018/ao/Model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" VERSION="1.2.1" xsi:schemaLocation="http://www.adito.de/2018/ao/Model adito://models/xsd/process/1.2.1"> + <name>AISalesproject_lib</name> + <majorModelMode>DISTRIBUTED</majorModelMode> + <process>%aditoprj%/process/AISalesproject_lib/process.js</process> + <variants> + <element>LIBRARY</element> + </variants> +</process> diff --git a/process/AISalesproject_lib/process.js b/process/AISalesproject_lib/process.js new file mode 100644 index 0000000000000000000000000000000000000000..0521bd2d9eb7229a5ded416377bd708fb15145dc --- /dev/null +++ b/process/AISalesproject_lib/process.js @@ -0,0 +1,157 @@ +import("AttributeRegistry_basic"); +import("KeywordRegistry_basic"); +import("Sql_lib"); +import("system.logging"); +import("system.db"); +import("system.result"); +import("system.vars"); +import("Keyword_lib"); +import("AI_lib"); +import("AISalesproject_lib"); +import("Attribute_lib"); +import("system.entities"); +import("DataCaching_lib"); + +/** + * Provides static methods for artificial intelligence.<br> + * <b>Do not create an instance of this!</b> + * + * @class + */ +function AISalesprojectUtil(){} + + +AISalesprojectUtil.getTrainedModel = function() +{ + var cache = new CachedData("SalesprojectNBData", false); + return cache.load(function (pTranslationNecessary, pLocale){ + var data = AISalesprojectUtil.train(); + return data; + }); +}; + + +AISalesprojectUtil.train = function () +{ + //Trainingdata + var data = new NBDataSet(); + + var loadConfig = entities.createConfigForLoadingRows() + .entity("Salesproject_entity") + .fields(["#UID", "CONTACT_ID", "PHASE", "STATUS", "VOLUME", "PROBABILITY"]); + + var spRecords = entities.getRows(loadConfig).map(function (spRow) + { + if(spRow["STATUS"] == $KeywordRegistry.salesprojectState$lost() || spRow["STATUS"] == $KeywordRegistry.salesprojectState$order()) + { + var attributes = []; + attributes.push(spRow["PHASE"]) //PHASE + if(spRow["VOLUME"] != null && parseFloat(spRow["VOLUME"]) > 0) + attributes.push(AISalesprojectUtil.getVolumeClassification(parseFloat(spRow["VOLUME"]))); //VOLUME + if(spRow["PROBABILITY"] != null) + attributes.push(AISalesprojectUtil.getProbabilityValue(spRow["PROBABILITY"])); //PROBABILITY + var sectorSP = new AttributeRelationQuery(spRow["CONTACT_ID"], $AttributeRegistry.industry()).getSingleAttributeValue(); + if(sectorSP != null) + attributes.push(sectorSP); //Sector + var doc = new NBDocument(spRow["#UID"], attributes); + + var loadCompConfig = entities.createConfigForLoadingRows() + .entity("Competition_entity") + .provider("Links") + .addParameter("ObjectType_param", "Salesproject") + .addParameter("ObjectRowId_param", spRow["#UID"]) + .fields(["ORGANISATION_NAME"]); + + var compRecords = entities.getRows(loadCompConfig).map(function (compRow) + { + doc.add(compRow["ORGANISATION_NAME"]); //competitors + }); + + data.add(spRow["STATUS"], [doc]); // train model with lost and order salesprojects + } + + }); + + // an optimisation for working with small vocabularies + var options = { + applyInverse: true + }; + + // create a classifier + var classifier = new NBClassifier(options); + + // train the classifier + classifier.train(data); + + //logging.log('Classifier trained.'); + //logging.log(JSON.stringify(classifier)); + return JSON.stringify(classifier); + +}; + +AISalesprojectUtil.classify = function (pSalesprojectId, pContactId, pPhase, pStatus, pVolume, pProb) +{ + + if(pSalesprojectId == null || pContactId == null) + return "--"; + var testAttributes = []; + testAttributes.push(pPhase) //PHASE + if(pVolume != null && parseFloat(pVolume) > 0) + testAttributes.push(AISalesprojectUtil.getVolumeClassification(parseFloat(pVolume))); //VOLUME + if(pProb != null) + testAttributes.push(AISalesprojectUtil.getProbabilityValue(pProb)); //PROBABILITY + if(pContactId != null) + { + var sectorSP = new AttributeRelationQuery(pContactId, $AttributeRegistry.industry()).getSingleAttributeValue(); + if(sectorSP != null) + testAttributes.push(sectorSP); //Sector + } + var loadCompConfig = entities.createConfigForLoadingRows() + .entity("Competition_entity") + .provider("Links") + .addParameter("ObjectType_param", "Salesproject") + .addParameter("ObjectRowId_param", pSalesprojectId) + .fields(["ORGANISATION_NAME"]); + + var compRecords = entities.getRows(loadCompConfig).map(function (compRow) + { + testAttributes.push(compRow["ORGANISATION_NAME"]); //competitors + }); + + //logging.log("testdata"); + //logging.log(JSON.stringify(testAttributes)); + + var model = AISalesprojectUtil.getTrainedModel(); + var classifier = new NBClassifier(JSON.parse(model)); + + // test the classifier on a new test object + var testDoc = new NBDocument(pSalesprojectId, testAttributes); + var classifyResult = classifier.classify(testDoc); + //logging.log("result"); + //logging.log(JSON.stringify(classifyResult)); + if(classifyResult.probability == null || isNaN(classifyResult.probability)) + return "--"; + else + return Math.round(parseFloat((classifyResult.probability) * 100)) + "% / " + KeywordUtils.getViewValue($KeywordRegistry.salesprojectState(), classifyResult.category); +}; + +AISalesprojectUtil.getVolumeClassification = function (pVolume) +{ + if(pVolume < 100000) + return "low"; + else if(pVolume >= 100000 && pVolume < 250000) + return "middle"; + else + return "high"; +}; + +AISalesprojectUtil.getProbabilityValue = function (pProbId) +{ + if(pProbId == "SALPROJPROB0" || pProbId == "SALPROJPROB25") + return "negative"; + else if(pProbId == "SALPROJPROB50") + return "neutral"; + else if(pProbId == "SALPROJPROB75" || pProbId == "SALPROJPROB100") + return "positive"; + return ""; +}; \ No newline at end of file diff --git a/process/AI_lib/AI_lib.aod b/process/AI_lib/AI_lib.aod new file mode 100644 index 0000000000000000000000000000000000000000..153e8fc6b66bfd5d8016c8a0a22521c04ad0e209 --- /dev/null +++ b/process/AI_lib/AI_lib.aod @@ -0,0 +1,9 @@ +<?xml version="1.0" encoding="UTF-8"?> +<process xmlns="http://www.adito.de/2018/ao/Model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" VERSION="1.2.1" xsi:schemaLocation="http://www.adito.de/2018/ao/Model adito://models/xsd/process/1.2.1"> + <name>AI_lib</name> + <majorModelMode>DISTRIBUTED</majorModelMode> + <process>%aditoprj%/process/AI_lib/process.js</process> + <variants> + <element>LIBRARY</element> + </variants> +</process> diff --git a/process/AI_lib/process.js b/process/AI_lib/process.js new file mode 100644 index 0000000000000000000000000000000000000000..b0f8c0f06354aee7dd7718887cafa97f7f92b2d6 --- /dev/null +++ b/process/AI_lib/process.js @@ -0,0 +1,219 @@ +import("system.logging"); +import("system.vars"); +import("AI_lib"); + +/** + * Provides static methods for artificial intelligence.<br> + * <b>Do not create an instance of this!</b> + * + * @class + */ +function AIUtil(){} + + +function NBClassifier(options) { + options = options || {}; + this.applyInverse = options.applyInverse || false; + this.probabilityThreshold = options.probabilityThreshold || 0.5; + this.defaultCategory = options.defaultCategory || null; + this.tokens = options.tokens || {}; + this.categoryCounts = options.categoryCounts || {}; + this.probabilities = options.probabilities || {}; +} + + +NBClassifier.prototype = { + train: function (trainingSet) { + var categories = Object.keys(trainingSet.categorizedItems); + var i = 0, j = 0, k = 0, category = ""; + // Iterate over each category in the training set + for (i = 0; i < categories.length; i++) { + category = categories[i]; + var subSet = trainingSet.categorizedItems[category]; + this.categoryCounts[category] = subSet.length; + // Iterate over each data item in the category + for (j = 0; j < subSet.length; j++) { + var item = subSet[j]; + // for each token in the data item, increment the token:category counter + var tokenlist = item.tokens; + for (k = 0; k < tokenlist.length; k++) { + var token = tokenlist[k]; + if (!this.tokens[token]) { + this.tokens[token] = {}; + } + if (!this.tokens[token][category]) { + this.tokens[token][category] = 1; + } else { + this.tokens[token][category] = 1 + this.tokens[token][category]; + } + } + } + } + //After counting occurences of tokens, calculate probabilities. + for (i = 0; i < categories.length; i++) { + category = categories[i]; + for (k in this.tokens) { + if (this.tokens.hasOwnProperty(k)) { + var count = this.tokens[k][category] || 0; + var total = this.categoryCounts[category]; + var percentage = count / total; + if (!this.probabilities[category]) { + this.probabilities[category] = {}; + } + this.probabilities[category][k] = percentage; + } + } + } + }, + + validate: function (testSet) { + var total = 0; + var correctGuesses = 0; + var wrongGuesses = 0; + var wrongCategories = {}; + var wrongItems = []; + var categories = testSet.categorizedItems; + var category; + for (category in categories) { + validateCategory(category); + } + + function validateCategory(category) { + if (categories.hasOwnProperty(category)) { + var items = categories[category]; + var item; + for (item in items) { + if (items.hasOwnProperty(item)) { + total += 1; + item = items[item]; + var result1 = this.classify(item); + // if certainty is below probabilityThreshold, go with the default + if (result1.probability <= this.probabilityThreshold) { + result1.category = this.defaultCategory || result1.category; + } + if (result1.category === category) { + correctGuesses++; + } else { + wrongCategories[result1.category] = (wrongCategories[result1.category]) ? wrongCategories[result1.category]++ : 1; + wrongItems.push(item.id); + wrongGuesses++; + } + } + } + } + } + + return { + 'total': total, + 'correct': correctGuesses, + 'wrong': wrongGuesses, + 'accuracy': (correctGuesses / (correctGuesses + wrongGuesses)), + 'wrongCategories': wrongCategories, + 'wrongItems': wrongItems + }; + }, + + classify: function (item) { + // for each category + var category; + var learnedProbabilities = this.probabilities; + var itemProbabilities = {}; + var itemTokens = item.tokens; + for (category in learnedProbabilities) { + if (learnedProbabilities.hasOwnProperty(category)) { + itemProbabilities[category] = 1; + var t; + var probs = learnedProbabilities[category]; + for (t in probs) { + // iterate over the tokens + if (probs.hasOwnProperty(t)) { + // and take the product of all probabilities + if (itemTokens.indexOf(t) !== -1) { + itemProbabilities[category] = itemProbabilities[category] * probs[t]; + } else if (this.applyInverse) { + itemProbabilities[category] = itemProbabilities[category] * (1 - probs[t]); + } + } + } + } + } + + // Pick the highest two probabilities + function compareCategories(a, b) { + if (a.probability > b.probability) { + return -1; + } + if (a.probability < b.probability) { + return 1; + } + return 0; + } + + var categoryScores = []; + var sumOfProbabilities = 0; + var k; + for (k in itemProbabilities) { + if (itemProbabilities.hasOwnProperty(k)) { + categoryScores.push({ + category: k, + probability: itemProbabilities[k] + }); + sumOfProbabilities += itemProbabilities[k]; + } + } + categoryScores = categoryScores.sort(compareCategories); + + var firstPlace = categoryScores[0]; + var secondPlace = categoryScores[1]; + var timesMoreLikely = firstPlace.probability / secondPlace.probability; + var probability = firstPlace.probability / sumOfProbabilities; + + return ({ + 'category': firstPlace.category, + 'probability': probability, + 'timesMoreLikely': timesMoreLikely, + 'secondCategory': secondPlace.category, + 'probabilities': categoryScores + }); + } +}; + + +function NBDataSet() { + this.categorizedItems = {}; +} + +NBDataSet.prototype = { + add: function (label, items) { + var originalItems = this.categorizedItems[label] || []; + this.categorizedItems[label] = originalItems.concat(items); + } +}; + + + +function NBDocument(id, tokens) { + if (!id) { + logging.log('Document(id, tokens) requires an id string'); + } + this.id = id; + this.tokens = tokens || []; +} + +NBDocument.prototype = { + add: function (token, factor) { + if(factor == undefined) + factor = 1 + if (Array.isArray(token)) { // array of tokens + for (var i = 0; i < token.length; i++) { + this.add(token[i], factor); + } + return; + } + if (typeof token === 'string') { + for (var j = 0; j < factor; j++) { + this.tokens.push(token); + } + } + } +}; \ No newline at end of file